

Facile Total Synthesis of (\pm) - α -Herbertenol, (\pm) - α -Cuparenone and (\pm) -HM-1 Methyl Ether Involving Alkylation of Hindered Esters

Ashutosh Pal, Pranab Dutta Gupta, Arnab Roy and Debabrata Mukherjee*

Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta - 700 032, India.

Received 2 March 1999; accepted 27 April 1999

Abstract: The total syntheses of (\pm) - α -herbertenol 1, (\pm) - α -cuparenone 4 and (\pm) -HM-1 methyl ether 3 have been successfully accomplished involving α,α -dimethylation of the esters 8a, 17 and 8b respectively as key steps. © 1999 Published by Elsevier Science Ltd. All rights reserved.

(-)- α -Herbertenol 1, a sesquiterpene phenol, exhibits significant antifungal properties and was isolated by Matsuo and co-workers¹ from the liverwort *Herberta adunca*, along with several closely related phenols. Recently, HM-1 2 and three other phenols possessing skeletal features similar to 1 have been isolated by Nohara *et al*² from the phytopathogenic fungus *Helicobasidium mompa*. The total syntheses of 1 and 2 present interesting problems in view of the steric congestion associated with two vicinal quaternary centres in a cyclopentane ring. The related sesquiterpene ketone α -cuparenone 4 has attracted³ considerable attention as a challenging synthetic target. In connection with our studies on alkylation of hindered esters,

we have accomplished the total syntheses of (\pm) - α -herbertenol 1, (\pm) -HM-1 methyl ether 3, and (\pm) - α -cuparenone 4 involving α,α -dimethylation of the esters 8a, 8b and 17 respectively as key steps.

The tetralones **5a** and **5b** were condensed with malononitrile to provide the unsaturated dinitriles **6a**, ⁴ m.p. 93-94°C and **6b**, m.p. 131-132°C in near quantitative yields (Scheme 1). Conjugate addition of MeMgI to **6a** afforded **7a** (89%) which on hydrolysis, decarboxylation, and esterification furnished the methyl ester **8a** in 82% yield. The dinitrile **6b** was similarly converted into the methyl ester **8b** in 74% overall yield. The ester **8a** was alkylated with MeI at -78°C using LDA (1 equiv.) as the base to provide the ester **9a** as a diastereoisomeric mixture in 95% yield. Alkylation of **9a** with MeI in the presence of LDA (1.7 equiv.) and HMPA (2 equiv.) at 0°C afforded the ester **10a** (92%). α,α-Dimethylation of **8b** was similarly carried out to provide **10b** (87%). The transformation of **8a** into **10a** could also be accomplished in 90% yield in a one-pot process employing a sequential methylation without isolating the monomethyl derivative **9a**. Oxidation of **10a** and **10b** with CrO₃ gave the keto-esters **11a**, m.p. 76-77°C and **11b**, m.p. 97-98°C in 75% and 78% yields respectively. Baeyer-Villiger reaction of **11a** and **11b** afforded the lactones **12a** (84%) and **12b** (88%). Alkaline hydrolysis of **12a** followed by treatment with Me₂SO₄ and esterification with CH₂N₂ furnished the diester **13a** (85%). The lactone **12b** was similarly converted into the diester **13b** (85%).

Scheme 2

Reagents and Conditions: i, CH₂(CN)₂, NH₄OAc, AcOH, C₆H₆, reflux; ii, MeMgI, CuI, THF, 25°C then reflux; iii, KOH, HOCH₂CH₂OH, H₂O, reflux, then H₃O⁺; heat (190°C); iv, CH₂N₂, Et₂O, 0°C; v, LDA (1 equiv.), THF, -20°C; MeI, HMPA, -78°C; vi, LDA (1.7 equiv.), HMPA (2 quiv.), THF, 0°C; MeI, 0°C; vii, CrO₃, AcOH, 10-25°C; viii, MCPBA, CH₂Cl₂, CF₃CO₂H, 0-25°C; ix, aq. NaOH, MeOH, reflux; then Me₂SO₄, 50-55°C, H₃O⁺; x, *t*-BuOK, C₆H₆ reflux, then H₃O⁺; DMSO, NaCl, 150°C; xi, N₂H₄, N₂H₄.2HCl, (HOCH₂CH₂)₂O, 130°C; KOH, 210°C; xii, BBr₃, CH₂Cl₂, 0-25°C; xiii, \Box_0 >CHCH₂CH₂MgBr, CuBr.Me₂S, THF, -10-25°C; xiv, AcOH, H₂O, 25-60°C; then Jones reagent, Me₂CO, 0-25°C.

Dieckmann cyclisation of the diesters 13a and 13b followed by decarbomethoxylation of the resulting crude β -ketoesters afforded the ketones 14a and 14b in 75% and 72% yields respectively. Huang-Minlon reduction of 14b furnished (\pm)-HM-1 methyl ether 3 (78%). Huang-Minlon reduction of 14a followed by demethylation with BBr₃ afforded (\pm)- α -herbertenol 1 (72%). The identities of synthetic 1 and 3 were secured through ¹H NMR, ¹³C NMR, IR and microanalytical data.

Conjugate addition of $\[\]_0^0 > \text{CHCH}_2\text{CH}_2\text{MgBr}$ to the unsaturated cyano-ester 15 afforded 16 (50%) which on hydrolysis, decarboxylation, and esterification furnished the ester 17 in 75% yield (Scheme2). α, α -Dimethylation of 17 as described for 10a gave the ester 18 (88%). Deacetalisation of 18 followed by oxidation of the resulting aldehyde with Jones reagent and esterification with CH_2N_2 furnished the diester 19 in 73% overall yield. Dieckmann cyclisation of 19 and subsequent decarbomethoxylation of the resulting β -ketoester afforded (\pm)- α -cuparenone 4 in 75% yield.

The spectral data of 1 and 4 agreed very well with those reported in the literature. 1,3

Acknowledgements: We are grateful to the CSIR, New Delhi, for financial support (Grant No. 01(1534)/98/EMR-II). One of us (P.D.G) thanks the CSIR for a fellowship.

References and Notes

- 1. Matsuo, A.; Yuki, S.; Nakayama, M. J. Chem. Soc. Perkin Trans. 1 1986, 701-710.
- 2. Kajimoto, T.; Yamashita, M.; Imamura, Y.; Takahasi, K.; Nohara, T.; Shibata, M. Chemistry Lett. 1989, 527-530.
- 3. Kulkarni, M.G.; Pendharkar, D.S. Tetrahedron 1997, 53, 3167-3172 and references cited therein.
- Satisfactory spectroscopic and microanalytical data were obtained for all new compounds.
- 5. Nagata, W.; Itazaki, H. Chem. Ind. 1964, 1194-1195.